2024
50. Lee Y., Kim S. Y., Yang J.*, Jang Y.J.*
Photocatlaytic Hydrogen Evolution Reaction Using Co2+ doped Suprastructure CdSe, in preparation
49. Choe S. and Jang Y.J.*
Efficient production of CH4 from electrochemical CO2 reduction using one-step synthesized Cu/N-doped Carbon with EDTA additive, in preparation
48. Kim H.E., Jang Y.J.*, Lee J.S.*
Highly active hydrogen production using Cd doped LaFeO3 photocathode, submitted
47. Periyayya Uthirakumar, Kim D., Vandung Dao, Chen Kai, Yun C., Jang Y.J., Lee I.H.*
Introducing Cu2O(111) phase on Cu (OH)2 nanorods integrated Pd-cocatalyst for boosting acetone selectivity via photoelectrochemical CO2RR
46. Kim H.E., Nam J., Lee J.H., Lee J.H., Choi S.H., Kim H.G., Jang Y.J.*, Lee H.*, Lee J.S.*
Defect Engineering to accelerate charge transport in the LaFeO3 photocathode via thermal oxidation: A combined experimental and theoretical study
45. Son J.Y., Choe S., Jang Y.J.*, Kim H.*
Waste paper-derived porous carbon via microwave-assisted activation for energy storage and water purification
44. Cho J.H., Ma J., Lee C., Lim J.W., Kim Y., Jang H.Y., Kim J., Seo M., Choi Y., Jang Y.J., Ahn S.H., Jang H.W., Back S., Lee J.L., Kim S.Y.
Crystallographically Vacancy-Induced MOF Nanosheet as Rational Single-Atom Support for Accelerating CO2 Electroreduction to CO
2023
43. Park S.Y., Jang S.E., Kim C.W., Jang Y.J.*, Youn D.H*
Exploring the source of ammonia generation in electrochemical nitrogen reduction using niobium nitride
42. Choe S., Kim.N., Jang Y.J.*
Perspective on the interfacial engineering for electrocatalytic N2 to NH3 conversion from catalysts to systems
41. Lee J., Bae S., Kim N., Jang Y.J., Park J.Y., Kim D.S*
Development of Highly stable and active intermetallic Pt-alloyed catalysts for the production of V3.5+ electrolyte in the vanadium redox flow batteries
40. Lee S., Song Y., Cho J., Jang Y.J.*, Yeom B.*
Ligand-Exchange-Assisted Layer-by-Layer Assembly of Au-Pt Bimetallic Nanocoposite Films and Their Electrocatalytic Activites for Hydrogen Evolution Reaction
39. Kim J. H., Lee C., Moon Y.H., Lee M.H., Kim E.H., Choi S.H., Jang Y.J.*, Lee J.S.*
Enhancing ammonia production rates from electrochemical nitrogen reduction by engineering three-phase boundary with phosphorus-activated Cu catalysts,
38. Jang J., Park S.Y., Youn D.H.* and Jang Y.J.*,
Recent Advances in Electrocatalysts for Ammonia Oxidation Reaction, Review Paper
37. Park S.Y., Jang Y.J.*, Youn D.H.*,
A Reviews of Transition Metal Nitride-Based Catalysts for Electrochemical Nitrogen Reduction to Ammonia, Review Paper
36. Lee H., Lee J.-H., Lee Y., Cho E.-B.*, Jang Y.J.*
Boosting solar-driven N2 to NH3 conversion using defect engineered TiO2/CuO heterojunction photocatalyst,
Applied Surface Science 620 156812 (2023)
35. Han G. H., Bang J., Park G., Choe S., Jang Y. J., Jang H.W.*, Kim S. Y.*, Ahn Sang Hyun*
Recent Advances in Electrochemical, Photochemical and Photoelectrochemical Reduction of CO2 to C2+ Products, Review Paper
2022
34. Cho J.H., Lee C., Hong S.H., Jang H.Y., Baek S., Seo M.-g., Lee M., Min H.-K., Choi Y., Jang Y.J., Ahn S.H.*, Jang H.W.*, Kim S.Y.*,
Transition Metal Ion Doping on ZIF-8 Enhances the Electrochemical CO2 Reduction Reaction,
33. Moon Y.H., Kim N., Kim S.M., Jang Y.J.*
Recent Advances in Electrochemical Nitrogen Reduction Reaction to Ammonia from the Catalyst to the System, Review Paper
32. Lee C., Kim H., Jang Y.J.*
Three Phase Boundary Engineering Using Hydrophilic-Hydrophobic Poly(N-isopropylacrylamide) with Oxygen-Vacant TiO2 Photocatalysts for Photocatalytic N2 Reduction,
31. Jang Y.J.*, Lee C., Moon Y.H., Choe S.
Solar-Driven Syngas Production Using Al-Doped ZnTe Nanorod Photocathodes,
30. Kim H.E., Kim J., Ra E.C., Zhang H., Jang Y.J.*, Lee J.S.*
Photoelectrochemical Nitrate Reduction to Ammonia on Ordered Silicon Nanowire Array Photocathodes,
29. Kim J.†, Jang Y.J.†, Baek W.†, Lee A R., Kim J.-Y.*, Hyeon T.*, Lee J.S.*
Highly Efficient Photoelectrochemical Hydrogen Production Using Nontoxic CuIn1.5Se3 Quantum Dots with ZnS/SiO2 Double Overlayers,
2021
28. Jang Y.J.†, Evans T.A.†, Samanta B.†, Zeng K., Fredrickson D.C., Toroker M.C.*, K.-S.Choi*
A Comparative Study of Bi, Sb, and BiSb for Electrochemical Nitrogen Reduction Leading to a New Catalyst Design Strategy,
J. Mater. Chem. A, 9, 20453-20465 (2021)
27. Choe S., Kim S.M., Lee Y., Seok J., Jung J., Lee J.S.*, Jang Y..J.*
Rational Design of Photocatalyst for Ammonia Production from Water and Nitrogen Gas, review paper
2020
26. Jang Y.J., Choi K.-S.*
Enabling Electrochemical N2 Reduction to NH3 in the Low Overpotential Region using Non-Noble Metal Bi Electrodes via Surface Composition Modification,
25. Jang Y.J., Lindberg, A. E., Lumley M.A., Choi K.-S.*
Photoelectrochemical Nitrogen Reduction to Ammonia on Cupric and Cuprous Oxide Photocathodes,
ACS Energy Lett. 5, 6, 1834-1839 (2020)
2014-2019
24. Lumley M.A., Radmilovic A., Jang Y.J., Lindberg, A. E., Choi K.-S.*
Perspectives on the Development of Oxide-Based Photocathodes for Solar Fuel Production,
J.Am.Chem.Soc. 141, 18358-18369 (2019)
23. Kim D.Y. †, Yoon T. †, Jang Y.J. †, Lee J. H., Na Y., Lee B. J., Lee J. S.*, Kim K. S.*
Band Gap Narrowing of Zinc Orthogermanate by Dimensional and Defect Modification,
J. Phys. Chem. C, 123, 23, 14573-14581 (2019)
22. Kim J.H. †, Jang Y.J. †, Choi S.H., Lee B.J., Lee M.H., Lee J.S.*
Hybrid Microwave Annealing for Fabrication of More efficient Semiconductor Photoanodes for Solar Water Splitting,
ACS Sustainable Chem. Eng. 7, 1, 944–949 (2019)
21. Jang Y.J., Lee J.S.*
Photoelectrochemical Water Splitting with p-Type Metal Oxide Semiconductor Photocathodes,
ChemSusChem, 12, 1835-1845 (2019)
20. Park Y.B. †, Kim J.H. †, Jang Y.J., Lee J.H., Lee M.H., Lee B.J., Youn D.H., Lee J.S.*
Exfoliated NiFe Layered Double Hydroxide Cocatalyst for Enhanced Photelectrochemical Water Oxidation with Hematite Photoanode,
ChemCatChem, 11, 443-448 (2019)
19. Kim J.H., Jang Y.J., Choi S.H., Lee B.J., Kim J.H., Park Y.B., Nam C.-M., Kim H.G., Lee J.S.*
A Multitude of Modifications Strategy of ZnFe2O4 Nanorod Photoanodes for Enhanced Photoelectrochemical Water Splitting Activity,
J.Mater.Chem A, 6, 12693-12700 (2018)
18. Kim J.-Y. †, Jang Y.J. †, Park J., Kim J., Kang J.S., Chung D.Y., Sung Y.-E., Lee C., Lee J.S.*, Ko M.J.*
Highly Loaded PbS/Mn-Doped CdS Quantum Dots for Dual Application in Solar-to-Electrical and Solar-to-Chemical Energy Conversion,
Appl. Catal.B: Environmental, 227, 409-417 (2018)
17. Jang Y.J., Mahesh B.D., Lee J., Choi S.H., Lee J.S.*
Metal-Free Artificial Photosynthesis of Carbon Monoxide Using N-Doped ZnTe Nanorod Photocathode Decorated N Doped Carbon Electrocatalyst Layer,
Adv. Energy Mater. 8, 1702636 (2018)
16. Jang Y.J., Lee, J., Kim J.H., lee B.J., Lee J.S.*
One-Dimensional CuIn Alloy Nanowires as a Robust and Efficient Electrocatalyst for Selective CO2-to-CO Conversion,
J. power source, 378, 412-417 (2018)
15. Choi, Y.H. †, Jang Y.J. †, Park H., Kim, W.Y., Lee, Y.H., Choi S.H. Lee, J.S.*
Carbon Dioxide Fischer-Tropsch Synthesis: A New Path to Carbon-Neutral Fuels,
Appl. Catal. B: Environmental, 202, 605-610 (2017)
14. Lee H.J., Lee B.J., Kang D., Jang Y.J., Lee J.S., Shin H.S.*
2D Materials-Based Photoelectrochemical Cells: Combination of Transition Metal Dichalcogenides and Reduced Graphene Oxide for Efficient Charge Transfer.
FlatChem, 4, 54-60 (2017)
13. Choi Y. H. Ra E.C., Kim E.H., Kim K.Y., Jang Y.J., Kang K-N., Choi S.H., Jang J-H., Lee J.S.*
Sodium-Containing Spinel Zinc Ferrite as a Catalyst Precursor for the Selective Synthesis of Liquid Hydrocarbon Fuels,
ChemSusChem, 10, 4764-4770 (2017)
12. Choi M., Lee J.H., Jang Y.J., Kim D., Lee J.S., Jang H.M.* Yong, K.*
Hydrogen-Doped Brookite TiO2 Nanobullets Array as a Noble Photoanode for Efficient Solar Water Splitting,
Sci.Reports, 6. 36099 (2016)
11. Park J., Kim H.J., Nam S.H., Kim H., Choi H.J., Jang Y.J., Lee J.S., Shin J., Lee H. Baik J.M.*
Two-Dimensional Metal-Dielectric Hybrid-Structured Film with Titanium Oxide for Enhanced Visible Light Absorption and Photo-Catalytic Application,
Nano Energy, 21, 115-122 (2016)
10. Jang Y.J., Lee J., Lee J. Lee J.S.*
Solar Hydrogen Production from Zinc Telluride Photocathode Modified with Carbon and Molybdenum Sulfide.
ACS Appl.Mater.Interfaces, 8, 7748-7755 (2016)
9. Jang Y.J. †, Jeong I. †, Lee J., Lee J., Ko M.J.*Lee J.S.*
Unbiased Sunlight-Driven Artificial Photosynthesis of Carbon Monoxide from CO2 Using a ZnTe-Based Photocathode and a Perovskite Solar Cell in Tandem,
ACS nano, 10, 6980-6987 (2016)
8. Ryu J. †, Jang Y.J. †, Choi S., Kang H.J., Park H., Lee, J.S.* Park S.*
All-in-one synthesis of mesoporous silicon nanosheets from natural clay and their applicability to hydrogen evolution,
NPG Asia Materials, 8, e248,1-9(2016)
7. Jang Y.J. †, Ryu J. †, Hong D., Park, S.,* Lee, J.S.*
A multi-stacked hyperporous silicon flake for highly active solar hydrogen production,
Chem. Commun. 52, 10221-10224(2016)
6. Jang Y.J. , Park Y.B., Kim H.E., Choi, Y.H., Choi, S.H., Lee, J.S.*
Oxygen-Intercalated CuFeO2 Photocathode Fabricated by Hybrid Microwave Annealing for Efficient Solar Hydrogen Production,
Chem. Mater. 28, 6054-6061(2016)
5. Jang Y.J.†, Jang J.-W†., Choi, S.H., Kim J.Y., Kim J.H., Youn D.H., Kim W.Y., Han S., Lee, J.S.*
Tree Branch-Shaped Cupric Oxide for Highly Effective Photoelectrochemical Water Reduction,
Nanoscale, 7, 7624-7631(2015)
4. Jang Y.J., Jang J.-W., Lee J., Kim J.H., Kumagai H., Lee J., Minegishi T., Kubota J., Domen K.* Lee J.S.*
Selective CO Production by Au Coupled ZnTe/ZnO in the Photoelectrochemical CO2 Reduction System.
Energy Environ. Sci. 8, 3597-3604(2015)
3. Kim J.H., Jang Y.J., Kim J.H., Choi S.H. Lee J.S.*
Defective ZnFe2O4 Nanorods with Oxygen Vacancy for Photoelectrochemical Water Splitting,
Nanoscale, 7, 19144-19151 (2015)
2. Youn D.H., Park Y.B., Kim J.Y., Magesh, G., Jang Y.J. Lee J.S.*
One-Pot Synthesis of NiFe Layered Double Hydroxide/Reduced Graphene Oxide Composite as an Efficient Electrocatalyst for Electrochemical and Photoelectrochemical Water Oxidation,
J.Power Source, 294, 437-443 (2015)
1. Jang J.-W., Cho S., Magesh G., Jang Y.J., Kim J.Y., Kim W.Y., Seo J.K., Kim S., Lee K.H. Lee J.S.*
Aqueous-Solution Route to Zinc Telluride Films for Application to CO2 Reduction.
Angew. Chem.Int Ed, 53, 5852-5857(2014)